
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site   http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Stationary Bifurcation Control for Systems with Uncontrollable 
Linearization

by Taihyun Kim and Eyad H. Abed

T.R. 99-40



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
1999 2. REPORT TYPE 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Stationary Bifurcation Control for Systems with Uncontrollable
Linearization 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Air Force Office of Scientific Research,875 North Randolph 
Street,Arlington,VA,22203-1768 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

17 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Stationary Bifurcation Control for Systems with Uncontrollable

Linearization

Taihyun Kim and Eyad H. Abed
Department of Electrical Engineering
and the Institute for System Research

University of Maryland
College Park, MD 20742 USA

thkim@isr.umd.edu abed@isr.umd.edu

January 28, 1999

Abstract

Stationary bifurcation control is studied under the assumption that the critical zero eigen-

value is uncontrollable for the linearized system. The development facilitates explicit construc-

tion of feedback control laws that render the bifurcation supercritical. Thus, the bifurcated

equilibria in the controlled system are guaranteed stable. Both pitchfork bifurcation and tran-

scritical bifurcation are addressed. The results obtained for pitchfork bifurcations apply to

general nonlinear models smooth in the state and the control. For transcritical bifurcations, the

results require the system to be affine in the control.

1 Introduction

In this paper, feedback control of stationary bifurcations is considered in the case that the critical

mode is uncontrollable for the linearized system. The aim of the control design is described as follows

Abed and Fu (1987). A nonlinear system is given for which a nominal equilibrium loses stability

through a real eigenvalue crossing the imaginary axis at the origin. Under these circumstances, the

system undergoes a stationary bifurcation. This can be a transcritical bifurcation or a pitchfork

bifurcation. Figure 1(a) illustrates a transcritical bifurcation, and figure 1(b),(c) illustrate the

two types of pitchfork bifurcation (subcritical and supercritical, respectively). The direction of a

pitchfork bifurcation is its subcriticality or supercriticality. As discussed by Abed and Fu (1987),

the supercritical pitchfork bifurcation (figure 1(c)) is preferable in practice since after the nominal

solution has lost stability, new stable equilibria arise that provide a nearby operating condition.

This observation motivates the search for feedback control laws that render a stationary bifurcation

supercritical. This is the local stationary bifurcation control problem.
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As shown in Abed and Fu (1987), nonlinear stabilizing controllers can be readily obtained if

the zero eigenvalue (critical mode) is controllable for the linearized system at the bifurcation point.

The situation was found to be significantly more difficult if the controllability condition fails, even

though an analogous problem for Hopf bifurcation was addressed successfully (Abed and Fu 1986).

Applications arise in which a stationary bifurcation occurs with the critical mode uncontrollable

and for which the design of stabilizing controllers is of significant importance. One such example

is control of rotating stall in axial flow compressors (Liaw and Abed 1996).

There have been other investigations into design of bifurcation control laws for systems with an

uncontrollable critical mode. For example, Fu and Abed (1993) consider the design of linear feed-

back control laws for nonlinear systems affine in the control. Kang (1998) also studies stabilization

for systems affine in the control under the condition that the noncritical modes are controllable.

In the present paper, no assumption of controllability of the noncritical modes is made, and the

general multi-input case is considered. Control of pitchfork bifurcations is considered for general

nonlinear system models. For the case of transcritical bifurcations, the analysis is relegated to a

narrow class of affine models. In both cases, the results permit explicit derivation of control laws.

The remainder of the paper proceeds as follows. In Section 2, basic results on bifurcation analysis

and control are recalled. In Section 3.1, these results are used for control design of general systems

undergoing pitchfork bifurcation. In Section 3.2, control of a class of affine systems undergoing

transcritical bifurcation is considered. Conclusions are collected in Section 4.

2 Background

This section reviews background material on stationary bifurcations and their control from Abed

and Fu (1987).

2.1 Bifurcation formulas for stationary bifurcation

Determination of whether a stationary bifurcation is supercritical, subcritical or transcritical can be

achieved using so-called bifurcation coefficients. These are coefficients in Taylor series expansions of

quantities, especially eigenvalues, of bifurcated solutions in a small neighborhood of the bifurcation

point. Formulas for these coefficients are referred to as bifurcation formulas. Next, we recall

bifurcation formulas that will be needed in the control design of this paper. References (Howard

1979, Iooss and Joseph 1980, Abed and Fu 1987) can be consulted for further details.
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Consider a one-parameter family of nonlinear autonomous systems

ẋ = f(x, µ) (1)

where x ∈ Rn is the state vector and µ is a real-valued parameter. Let f(x, µ) be sufficiently

smooth in x and µ and let x0
µ be the nominal equilibrium point of the system as a function of the

parameter µ.

Suppose that the next hypothesis holds.

(S) The Jacobian matrix of system (1) at the equilibrium x0
µ has a simple eigenvalue λ1(µ) such

that λ1(0) = 0 and λ′1(0) 6= 0, and the remaining eigenvalues lie in the open left half of the

complex plane for µ = 0.

The stationary bifurcation theorem (Chow and Hale 1982, Guckenheimer and Holmes 1983)

asserts that hypothesis (S) implies a stationary bifurcation from x0
0 at µ = 0 for (1). That is, a new

equilibrium point bifurcates from x0
0 at µ = 0. Near the point (x0

0, 0) of the (n + 1)-dimensional

(x, µ)-space, there is a parameter ε and a locally unique curve of critical points (x(ε), µ(ε)), distinct

from x0
µ and passing through (x0

0, 0), such that for all sufficiently small |ε|, x(ε) is an equilibrium

point of (1) when µ = µ(ε).

The parameter ε may be chosen such that x(ε), µ(ε) are smooth. The series expansions of

x(ε), µ(ε) can be written as

µ(ε) = µ1ε+ µ2ε
2 + . . . (2)

x(ε) = x0
µ + x1ε+ x2ε

2 + . . . (3)

If µ1 6= 0, the system undergoes a transcritical bifurcation from x0
µ at µ = 0. That is, there is a

second equilibrium point besides x0
µ for both positive and negative values of µ with |µ| small (see

figure 1 (a)). The stability of the bifurcated equilibria in the case of transcritical bifurcation is as

depicted in the figure. If µ1 = 0 and µ2 6= 0, the system undergoes a pitchfork bifurcation for |µ|

sufficiently small. That is, there are two new equilibrium points existing simultaneously, either for

positive or for negative values of µ with |µ| small (see figure 1 (b),(c)). The bifurcated equilibrium

points have an eigenvalue β(ε) determining their stability which vanishes at ε = 0. The series

expansion β(ε) is given by

β(ε) = β1ε+ β2ε
2 + . . . (4)

with

β1 = −µ1λ
′(0) (5)
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and, in case β1 = 0, β2 is given by

β2 = −2µ2λ
′(0) (6)

The stability coefficients β1 and β2 can be determined solely from eigenvector computations

and the coefficients of the series expansion of the vector field. System (1) can be written in the

series form

˙̃x = Lµx̃+Qµ(x̃, x̃) + Cµ(x̃, x̃, x̃) + . . .

= L0x̃+ µL1x̃+ µ2L2x̃+ . . .

+Q0(x̃, x̃) + µQ1(x̃, x̃) + . . .

+C0(x̃, x̃, x̃) + . . . (7)

where x̃ = x − x0
0, Lµ, L1, L2 are n × n matrices, Qµ(x, x), Q0(x, x), Q1(x, x) are vector-valued

quadratic forms generated by symmetric bilinear forms, and Cµ(x, x, x), C0(x, x, x) are vector-

valued cubic forms generated by symmetric trilinear forms.

By hypothesis (S), the Jacobian matrix L0 has only one simple zero eigenvalue with the re-

maining eigenvalues stable. Denote by l and r the left (row) and right (column) eigenvectors of the

matrix L0 associated with the simple zero eigenvalue, respectively, where first component of r is

set to be 1 and the left eigenvector l is chosen such that lr = 1. It is well known that

λ′(0) = lL1r (8)

A stability result for the bifurcated equilibria of system (7) is given in the following lemma.

Lemma 1 If β1 = 0 and β2 6= 0, then Eq. (1) undergoes a pitchfork bifurcation at µ = 0. If β1 6= 0,

then Eq. (1) undergoes a transcritical bifurcation. In the former case, the pitchfork bifurcation is

supercritical if β2 < 0, but is subcritical if β2 > 0. Here,

β1 = lQ0(r, r) (9)

β2 = 2l{2Q0(r, x2) + C0(r, r, r)} (10)

where

x2 = −(RTR)−1RT

 Q0(r, r)

0
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R =

 L0

l

 (11)

µ

(a) Transcritical bifurcation

µ

(b) Subcritical pitchfork bifurcation

µ

:stable
:unstable

(c) Supercritical pitchfork bifurcation

Figure 1: Stationary bifurcation diagrams. The variable in the vertical direction represents equi-

librium values for a system in normal form.

2.2 Bifurcation control in the case of a controllable critical mode

Next, we recall the results of Abed and Fu (1987) which give sufficient conditions for local stabi-

lizability of an equilibrium point at criticality and for local stabilizability of bifurcated equilibria

under assumption (S). These conditions involve assumptions on the controllability of the critical

mode of the linearized system.
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Consider a system

ẋ = f(x, µ, u) (12)

where x ∈ Rn is the state vector, u ∈ Rm is input vector, and µ ∈ R is the bifurcation parameter.

Expanding the vector field of (12) in x, µ and u, we have

ẋ = f(x, µ, u)

= L0x+ µL1x+
m∑
i=1

uiL̃
i
1x+

m∑
i=1

biui +Q0(x, x)

+µ2L2x+ µQ1(x, x) +
m∑
i=1

uiQ̃i(x, x)

+C0(x, x, x) + . . . (13)

Note that the linearized system is

ẋ = L0x+
m∑
i=1

biui (14)

At the critical parameter µ := µc, L0 has one zero eigenvalue. A feedback control consisting of

quadratic and cubic terms is considered:

u(x) =
m∑
i=1

xTQuix+ Cui(x, x, x) (15)

Following (Abed and Fu 1987) use an asterisk to denote quantities for the closed-loop system. Then

the bifurcation coefficients taking into account the state feedback (15) are (details in (Abed and

Fu 1987)):

β∗1 = l{Q0(r, r) +
m∑
i=1

(rTQuir)b
i} (16)

and, if β∗1 = 0,

β∗2 = 2l{2Q0(r, x∗2) + 2
m∑
i=1

(rTQuix
∗
2)bi

+
m∑
i=1

(rTQuirL̃
i
1r) + C0(r, r, r) +

m∑
i=1

Cui(r, r, r)b
i} (17)

Here, x∗2 is given by

x∗2 = −(RTR)−1RT
[
Q0(r, r) +

∑m
i=1(rTQuir)b

i

0

]
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= x2 −
m∑
i=1

(rTQuir)(R
TR)−1RT

[
bi

0

]
(18)

where x2 is the value for u ≡ 0.

By employing these formulas, the following two results were obtained in (Abed and Fu 1987).

Theorem 1 Let hypothesis (S) hold and assume lbi 6= 0 for some i ∈ 1, . . . ,m, that is, the critical

zero eigenvalue is controllable for the linearized version of Eq. (12) near the origin. Then there is

a smooth feedback control u = u(x) with u(0) = 0, containing only quadratic and cubic terms in

x, which solves the local stationary bifurcation problem for (12). Moreover, the quadratic terms in

u(x) can be used to ensure that β1 = 0 for the controlled system, and the cubic terms can then be

used to ensure that β2 < 0.

Theorem 2 Let hypothesis (S) hold and assume lbi = 0 for all i = 1, . . . ,m, that is, the critical

zero eigenvalue is uncontrollable for the linearized version of Eq. (12) near the origin. Then if

β1 6= 0 for with u(x) ≡ 0, the local stationary problem for (12) is not solvable by a smooth feedback

control with vanishing linear part.

3 Stationary Bifurcation Control with Uncontrollable

Linearization

In this section, we investigate the design of feedback control laws for stabilizing stationary bifur-

cation for systems with an uncontrollable critical mode. We first consider the case of pitchfork

bifurcation and then transcritical bifurcation.

3.1 Pitchfork bifurcation control

Suppose that the system (12) undergoes a pitchfork bifurcation and that the critical (zero) eigen-

value is uncontrollable for the linearized system at bifurcation. This implies that the bifurcation

coefficient β1 = 0 for the open-loop system.
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To facilitate the search for a stabilizing control law, perform a linear coordinate transformation

z = Tx

=
[
r ξ2 . . . ξn

]
x (19)

where r, ξ2, . . . , ξn are orthogonal column vectors in Rn. Thus det T 6= 0. In z coordinates, the

system becomes

ż = f(z, µ, u)

= L0z + µL1z +
m∑
i=1

uiL̃
i
1z +

m∑
i=1

biui +Q0(z, z)

+µ2L2z + µQ1(z, z) +
m∑
i=1

uiQ̃1(z, z)

+C0(z, z, z) + . . . (20)

For simplicity, we do not change the notation for the quantities L0, L1, Q0, . . ., even though they

are affected by the transformation. Because of the orthogonality assumption above, L0 takes the

form

L0 =

[
0 0
0 A1

]
(21)

where A1 is an (n−1)×(n−1) invertible matrix. Take the right and left eigenvectors corresponding

to the zero eigenvalue of L0 (21) to be r = [1, 0, . . . , 0]T and l = [1, 0, . . . , 0], respectively.

Since β1 = 0 in the absence of control, we limit our search to feedback laws with a vanishing

linear part. This ensures that β∗1 , the value of β1 after feedback, is also 0. (As in the preceding

section, an asterisk indicates a quantity for the closed-loop system.) Thus, controls are sought in

the form

ui(z) = zTQuiz + Cui(z, z, z) for i = 1, . . . ,m (22)

The coefficient β∗2 , which determines whether the pitchfork bifurcation is supercritical or subcritical

for the closed loop system, is given by (17). Using l = [1, 0, . . . , 0] and the structure of L0, we find

that

(RTR)−1RT =

[
0 0 1

0 A−1
1 0

]
(23)

In addition, since only the first element of r is nonzero,

rTQuir = ciu (24)
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where ciu denotes the coefficient of z2
1 in the formula (22) for the input ui. Thus, we can conclude

that only the z2
1 terms in an input of the form (22) affect the direction of the pitchfork bifurcation.

Eq. (18) for x∗2 now gives

x∗2 = x2 −
m∑
i=1

ciuζ
i, (25)

where the vectors ζi, i = 1, . . . ,m, are defined as

ζi =

[
0
ζ̄i

]
=

[
0

A−1
1 b̄i

]
(26)

and where the b̄i are (n− 1)-dimensional vectors containing all but the first (0) component of the

vectors bi; i.e.,

bi =

[
0
b̄i

]
(27)

Note that lbi = 0 and l = [1, 0, . . . , 0].

Again, using the fact lbi = 0 for i = 1, . . . ,m, Eq. (17) simplifies to

β∗2 = 2l{2Q0(r, x∗2) +
m∑
i=1

ciuL̃
i
1r + C0(r, r, r)} (28)

Note that the eigenvectors l and r are unaffected by the feedback since the control law does not

contain linear terms; thus the asterisk notation is not needed for these vectors. This will change

below in our discussion of control of transcritical bifurcations. Note also that the cubic terms in the

input do not have any effect on β∗2 . Moreover, since only the first elements of r and l are nonzero

and the z2
1 term in ż1 vanishes (since β1 = lQ0(r, r) = 0), Eq. (28) gives

β∗2 = 4{
n∑
i=2

c1ix
i
2 −

m∑
j=1

cju

n∑
i=2

c1ik
j
i }+ 2(

m∑
j=1

cjuL̃
j1
1 ) + 2c3

= 2{2
n∑
i=2

c1ix
i
2 + 2c3}+ 2

m∑
i=1

ciu{
n∑
j=2

c1jζ
i
j + L̃i11 } (29)

where c1i and c3 are the coefficient of z1zi and the coefficient of z3
1 in ż1, respectively. Also, L̃i11

denotes the (1, 1) element of the matrix L̃i1.

The following assumption is now introduced.
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(A1) At least one among the coefficients ρi, i ∈ 1, . . . ,m, does not vanish, where the ρi are defined

as follows:

ρi = −4
n∑
j=2

c1jζ
i
j + 2L̃i11 (30)

Theorem 3 Let the system (12) with input u ≡ 0 undergo a pitchfork bifurcation from the origin at

µ = 0. Also, assume lbi = 0 for all i = 1, . . . ,m; that is, the critical zero eigenvalue is uncontrollable

for the linearized version of (12). Moreover, suppose that (A1) holds. Then, there exists a smooth

feedback control containing only quadratic terms in z1, which solves the local stationary bifurcation

control problem for Eq. (12). Moreover, the nonvanishing of at least one of the ρi is necessary and

sufficient for stabilization using feedback of the form (22).

3.2 Transcritical bifurcation control

Next, we consider the case in which the system (12) undergoes a transcritical bifurcation, that is,

(S) holds and β1 6= 0. As in the foregoing, the critical zero eigenvalue is assumed uncontrollable for

the linearized version of Eq. (12). We proceed in two steps. First, we use linear state feedback to

transform the transcritical bifurcation into a pitchfork bifurcation. Then, we add quadratic (plus

higher order if desired) feedback to stabilize the achieved pitchfork bifurcation.

For simplicity, we again consider the system after the linear transformation (19) has been

performed. From Theorem 2, a feedback consisting of only quadratic and cubic terms cannot

transform the transcritical bifurcation into a pitchfork bifurcation. It is for this reason that we seek

a feedback control that also includes a linear term, taking the form

ui(z) = Kiz + zTQuiz + Cui(z, z, z) for i = 1, . . . ,m (31)

Unfortunately, a linear term in the state feedback significantly complicates analysis of the bifur-

cation. A linear feedback can affect the eigenvalues and eigenvectors of the linearization, making

determination of its effect on the bifurcation formulas (9), (10) very difficult.

To mitigate this problem, we focus on the following special class of nonlinear systems:

ż = f(z, µ) +
m∑
i=1

biui (32)

Note that this model is affine in the inputs, and that the inputs enter the dynamics through

multiplication by constant vectors.
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For the system (32) to undergo a transcritical bifurcation for open-loop system, bifurcation

coefficient β1 must be nonzero. The bifurcation coefficient β1 for the open-loop system (32) can be

calculated by using Eq. (9). Recall that only the first element of the left and right eigenvectors

corresponding to critical zero eigenvalue are nonzero. The coefficient β1 is given by

β1 = lQ0(r, r) =
[

1 0 . . . 0
]

rTΞ1r

rTΞ2r
...

rTΞnr


= rTΞ1r = cz2

1
6= 0 (33)

where the Ξi are symmetric matrices that are easy to compute given Q0 (the bilinear form Q0(x, y)).

Since the first element of each of the bi vanishes (27), the controls ui do not change the right

side of the equation for ż1 in (32). Thus, Ξ1 is not affected by feedback. It should also be noted

that linear state feedback does not change l (the left eigenvector associated with the critical zero

eigenvalue) due to the structure of the Jacobian matrix (21) and the uncontrollability of the critical

mode. Thus, the only way to transform the transcritical bifurcation into a pitchfork bifurcation

(i.e., to make β1 = 0) is to change the right eigenvector r through linear state feedback.

Here, for simplicity we limit the linear state feedback to be a function of z1 alone. Thus, we

consider state feedbacks of the form

ui(z) = kiz1 for i = 1, . . . ,m (34)

where ki ∈ R for i = 1, . . . ,m. (Note that the i-th scalar ki is the first component of the row vector

Ki of Eq. (31), for i = 1, . . . ,m.) Once appropriate gains ki are found, nonlinear terms will be

re-inserted in the feedback.

In Theorem 4 below, we will require at least one of the following two assumptions to hold.

(B1) There exists a v =

[
v1

v̄

]
with v1 6= 0 v1 ∈ R, that belongs to the null space of Q1 and v̄

belongs to the linear space spanned by the ζ̄i for i = 1, . . . ,m (26).

(B2) Q1 has a positive eigenvalue (λp) and the negative eigenvalue (denote λn) with corresponding

eigenvector p and n such that following three conditions hold.

(B2-1) At least one of the eigenvectors (n and p) has a nonzero first element.

(B2-2) Writing n =

[
n1

n̄

]
and p =

[
p1

p̄

]
where n1 and p1 are scalars, n̄ are p̄ belong to the

linear space spanned by the ζ̄i for i = 1, . . . ,m (26).
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(B2-3) The following pair of equations is valid:

n1 + p1 = 1

λp

n∑
i=1

p2
i + λn

n∑
i=1

n2
i = 0 (35)

where pi and ni denote the i-th element of p and n, respectively.

The condition (B2-3) fixes a scaling on the eigenvectors n and p. Also, note that if only one of n1

and p1 is nonzero, then Eq. (35) can always be achieved.

Theorem 4 Let the system (32) with input u ≡ 0 undergo a transcritical bifurcation from the

origin at µ = 0. Also, assume lbi = 0 for all i = 1, . . . ,m; that is, the critical zero eigenvalue is

uncontrollable for the linearized version of (32). Moreover, suppose that either assumption (B1)

or (B2) holds. Then, the transcritical bifurcation of system (32) is transformable to a pitchfork

bifurcation by means of linear state feedback of the form (34).

Proof: The Jacobian matrix after applying a linear state feedback of the form (34) is given by

L∗0 =

[
0 0∑m
i=1 kiζ̄i A1

]
(36)

The right eigenvector r corresponding to the zero eigenvalue becomes

[
1
r̄

]
, where the first element

of r is 1 since lr = 1 and l = [1, 0, . . . , 0], and where the subvector r̄ solves the following equation:

m∑
i=1

kib̄
i +A1r̄ = 0 (37)

Since A1 is an (n− 1)× (n− 1) full rank matrix, we have

r̄ =
m∑
i=1

kiA
−1b̄i

=
m∑
i=1

kiζ̄
i (38)

It is easy to see that if either assumption (B1) or (B2) is satisfied, then we can set the right eigen-

vector corresponding to the critical eigenvalue to a value which results in β1 = 0.
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Note that including other states besides z1 in the linear state feedback will change the A1

matrix. Thus, it is possible to design a linear state feedback that will maintain stability of matrix

A1 and result in a desired set of vectors ζ̄i = A−1
1 b̄i which satisfies the conditions of Theorem 4.

The following theorem follows directly from these observations.

Theorem 5 Let the system (32) with input u ≡ 0 undergo a transcritical bifurcation from the origin

at µ = 0. Assume lbi = 0 for all i = 1, . . . ,m; that is, the critical zero eigenvalue is uncontrollable

for the linearized version of (32). Moreover, suppose that Ξ1 is either positive definite or negative

definite. Then, bifurcation control of the system (32) cannot be achieved by means of state feedback.

Proof: For a pitchfork bifurcation to occur in the closed-loop system, β∗1 must vanish. For the

system (32), β∗1 is given by

β∗1 = r∗TΞ1r
∗ (39)

where r∗ is the right eigenvector of L∗0 (the closed loop Jacobian matrix) associated with the eigen-

value 0. Since Ξ1 is either positive definite or negative definite, there is no nonzero r∗ ∈ Rn for

which β∗1 vanishes.

Now, we want to add a quadratic term and/or cubic term to the linear feedback such that the

pitchfork bifurcation that system (32) will undergo is guaranteed to be supercritical. To determine

direction of pitchfork bifurcation, we calculate β2. Recall that the left eigenvector corresponding

to the critical zero eigenvalue is unaffected by linear state feedback. Also, recall that only the first

element of the left eigenvector is nonzero and it takes the value 1. Using these facts and Eq. (17),

we find

β∗2 = 4r∗TΞ1x
∗
2 + 2

m∑
i=1

r∗TQuir
∗L̃1i

1 r
∗ + 2C01(r∗, r∗, r∗) (40)

where C01 represents the cubic terms in ż1 and L̃1i
1 denotes first row of matrix L̃i1. Using Eq. (18),

(40) becomes

β∗2 = 4r∗TΞ1x2 − 4r∗TΞ1

m∑
i=1

r∗TQuir
∗δi + 2

m∑
i=1

rTQuirL̃
1i
1 r
∗ + 2C01(r∗, r∗, r∗)

= 4r∗TΞ1x2 + 2C01(r∗, r∗, r∗) +
m∑
i=1

r∗TQuir
∗{−4r∗TΞ1δi + 2L̃1i

1 r
∗} (41)

13



where δi = (RTR)−1RT
[
bi

0

]
. The next theorem follows from the preceding discussion. The

theorem make use of the following assumption.

(B3) At least one among the coefficients νi, i ∈ 1, . . . ,m does not vanish, where the νi are defined

as follows:

νi := −4rTΞ1δi + 2L̃1i
1 r
∗ (42)

Theorem 6 Let the system (32) with u ≡ 0 undergo a transcritical bifurcation from the origin at

µ = 0. Assume lbi = 0 for all i ∈ 1, . . . ,m, that is, the critical zero eigenvalue is uncontrollable for

the linearized version of (32). Moreover, suppose that (B3) holds and also that at least one of (B1)

or (B2) holds. Then, there exists a smooth feedback control in the form of (31), which solves the

local stationary bifurcation control problem for Eq. (32).

Proof: Let î be an index for which νî 6= 0. Then, letting the control uî of (31) be uî(z) =

Kîz + zTQuîz = kîz1 + zTQuîz we can set β∗2 (41) to any desired value. One such example, which

is independent of r∗, is zTQuoz = cz2
1 since the first element of r∗ is always 1. Here, c is a real

constant chosen to ensure that β∗2 is negative.

4 Conclusion

In this paper, we studied stationary bifurcation control for systems with uncontrollable lineariza-

tion. For systems undergoing pitchfork bifurcation, purely nonlinear state feedback was used to

achieve a supercritical bifurcation in the closed-loop system. This was done under general conditions

for a large class of real-analytic models. Analogous results for control of transcritical bifurcation

were obtained for a smaller class of systems using a two-step approach. In the first step, linear

feedback was used to transform the bifurcation into a pitchfork bifurcation. In the second step,

quadratic feedback was employed to ensure supercriticality of the achieved pitchfork bifurcation.

In both cases, the designed feedback laws would represent the first phase of an actual design, which

could be followed with inclusion of other feedback terms to optimize system performance.
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